2,100 research outputs found

    On the Computation Power of Name Parameterization in Higher-order Processes

    Full text link
    Parameterization extends higher-order processes with the capability of abstraction (akin to that in lambda-calculus), and is known to be able to enhance the expressiveness. This paper focuses on the parameterization of names, i.e. a construct that maps a name to a process, in the higher-order setting. We provide two results concerning its computation capacity. First, name parameterization brings up a complete model, in the sense that it can express an elementary interactive model with built-in recursive functions. Second, we compare name parameterization with the well-known pi-calculus, and provide two encodings between them.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    Strongly Regular Graphs Constructed from pp-ary Bent Functions

    Full text link
    In this paper, we generalize the construction of strongly regular graphs in [Y. Tan et al., Strongly regular graphs associated with ternary bent functions, J. Combin.Theory Ser. A (2010), 117, 668-682] from ternary bent functions to pp-ary bent functions, where pp is an odd prime. We obtain strongly regular graphs with three types of parameters. Using certain non-quadratic pp-ary bent functions, our constructions can give rise to new strongly regular graphs for small parameters.Comment: to appear in Journal of Algebraic Combinatoric

    Experimental non-local generation of entanglement from independent sources

    Full text link
    We experimentally demonstrate a non-local generation of entanglement from two independent photonic sources in an ancilla-free process . Two bosons (photons) are entangled in polarization space by steering into a novel interferometer setup, in which they have never meet each other. The entangled photons are delivered to polarization analyzers in different sites, respectively, and a non-local interaction is observed. Entanglement is further verified by the way of the measured violation of a CHSH type Bell's inequality with S-values of 2.54 and 27 standard deviations. Our results will shine a new light into the understanding on how quantum mechanics works, have possible philosophic consequences on the one hand and provide an essential element for quantum information processing on the other hand. Potential applications of our results are briefly discussed.Comment: 5 pages, 4 figure

    Adaptive DCTNet for Audio Signal Classification

    Full text link
    In this paper, we investigate DCTNet for audio signal classification. Its output feature is related to Cohen's class of time-frequency distributions. We introduce the use of adaptive DCTNet (A-DCTNet) for audio signals feature extraction. The A-DCTNet applies the idea of constant-Q transform, with its center frequencies of filterbanks geometrically spaced. The A-DCTNet is adaptive to different acoustic scales, and it can better capture low frequency acoustic information that is sensitive to human audio perception than features such as Mel-frequency spectral coefficients (MFSC). We use features extracted by the A-DCTNet as input for classifiers. Experimental results show that the A-DCTNet and Recurrent Neural Networks (RNN) achieve state-of-the-art performance in bird song classification rate, and improve artist identification accuracy in music data. They demonstrate A-DCTNet's applicability to signal processing problems.Comment: International Conference of Acoustic and Speech Signal Processing (ICASSP). New Orleans, United States, March, 201

    Restarted Hessenberg method for solving shifted nonsymmetric linear systems

    Get PDF
    It is known that the restarted full orthogonalization method (FOM) outperforms the restarted generalized minimum residual (GMRES) method in several circumstances for solving shifted linear systems when the shifts are handled simultaneously. Many variants of them have been proposed to enhance their performance. We show that another restarted method, the restarted Hessenberg method [M. Heyouni, M\'ethode de Hessenberg G\'en\'eralis\'ee et Applications, Ph.D. Thesis, Universit\'e des Sciences et Technologies de Lille, France, 1996] based on Hessenberg procedure, can effectively be employed, which can provide accelerating convergence rate with respect to the number of restarts. Theoretical analysis shows that the new residual of shifted restarted Hessenberg method is still collinear with each other. In these cases where the proposed algorithm needs less enough CPU time elapsed to converge than the earlier established restarted shifted FOM, weighted restarted shifted FOM, and some other popular shifted iterative solvers based on the short-term vector recurrence, as shown via extensive numerical experiments involving the recent popular applications of handling the time fractional differential equations.Comment: 19 pages, 7 tables. Some corrections for updating the reference

    Generation of two-giant-atom entanglement in waveguide-QED systems

    Full text link
    We study the generation of quantum entanglement between two giant atoms coupled to a one-dimensional waveguide. Since each giant atom interacts with the waveguide at two separate coupling points, there exist three different coupling configurations in the two-atom waveguide system: the separated, braided, and nested couplings. Within the Wigner-Weisskopf framework for single coupling points, the quantum master equations governing the evolution of the two giant atoms are obtained. For each coupling configuration, the entanglement dynamics of the two giant atoms is studied, including the cases of two different atomic initial states: single- and double-excitation states. It is shown that the generated entanglement depends on the coupling configuration, phase shift, and atomic initial state. For the single-excitation initial state, there exists steady-state entanglement for these three couplings due to the appearance of the dark state. For the double-excitation initial state, an entanglement sudden birth is observed via adjusting the phase shift. In particular, the maximal entanglement for the nested coupling is about one order of magnitude larger than those of separate and braided couplings. In addition, the influence of the atomic frequency detuning on the entanglement generation is studied. This work can be utilized for the generation and control of atomic entanglement in quantum networks based on giant-atom waveguide-QED systems, which have wide potential applications in quantum information processing.Comment: 13 pages, 8 figures, to appear in Physical Review A. arXiv admin note: substantial text overlap with arXiv:2303.1474
    • …
    corecore